Ay EXastro

Guidebook for Improving Efficiency in System
Operation and Construction.

Powered by Exastro and Ansible

Table of contents

« Introduction
« Overview Image.
« Automation Preparation
Step 1 : Central management of the system info.
Step 2 : Actualize Automatic Execution.
Step 3 : Connect Design info and Automated Executions.
« Implementing automated SI
Effects and Estimations
Post-Automation Process changes and results.

« Summary

Introduction

Ay Exastro

About this document

IT Engineers who are currently working in the field are struggling with
inefficient system operation and construction. While the obvious solution is
to make it more efficient, there are many who are wondering how to do it.

This document uses an on premise environment to show what obstacles to
get rid off and what kind of preparation one must do in 3 simple steps.

Step 1 : Central management of System info
Step 2 : Actualize Automatic Execution
Step 3 : Connect Design info and Automated Executions.

In order to estimate the automation/efficiency rate, the process changes and
results will be divided into phases.

Roles used in this document.

For the sake of convenience, we will explain the roles used in this document below.

I Development/Construction team

®In this document, the team responsible for system construction will be called
“Construction team”. Normally in a real project, this would also include someone
responsible for business/affairs and infrastructure.

I Operation team
®The team responsible for operating running systems is called “Operation team”.

I Team leader
®Representatives from each team who shares information and coordinates the team.

Overview image

Ay Exastro

AS-IS and TO BE in Automation.

By following step 1-3, we can automate system operation/construction.
Additionally, by changing the process, we can improve the efficiency of the
automation.

TO-BE

Automated system
construction/operation

A Preparing for Automation (Step 1,Step 2,Step 3)

e

Implementing Automated SI
AS-IS (Changes to the process and results)

Manual system
construction/operation

The “pain” of IT Engineers

Tie ApEiin? &fF 167 EREneers e Werls Wik J

Preparation

E E EE EH E HEHEE

Constiucting/Opeiating

Delavs and errors occurs when communicating between teams.

Double managing data and proprietary wording leads to errors in the design
Multiple development leads to complications with managing design documents

(forms)

As a result, we are unable to check before and after the settings.

Work orders between teams are complex. Each time a time chart is created, it
gets discarded.

Every operation’s Manual is discarded after its created/reviewed.
Configurations are embedded in each procedure, and the number of patterns
increases each time a new model/os is added (barrier to multi-vendor support)

Since the operations are done manually, the production time is inconsistent.
=People often have to wait before they can continue.
Since most of the operations are done manually, human error is inevitable.

Exastro

The “Pain” of IT Engineers

{ \Welcanjsolvelthelproblemsling3jsteps? J

Step 1
Centrally Manage
design info
i. Design Step 3
CMDB i info Link centrally managed
g design info and automation
Preparation F CED
Step 2 e~ QTP
Automate nfo_ <>
| Job _
Execution L Job

Overview over Exastro IT Automation

ExastroiigAutomationjsuppontsithef3jsteplsolution

Step 1 : Centrally manage
design info

° 0 EXxastro
A IT Automation
\,E-. Design management Automatic setting

RedHat
Ansible Automation
Platform

.'H' Terraform Services

UI Mod;::;ized ‘ IaC PO 9w -
S S

Spread
sheet

Parameter Input
o= S| | catas
External -
tools etc

I 1 J
I

.

Multiple user interfaces Central Multiple automation Many target device types
(Web, Spreadsheet, Rest API) management softwares (Server/Storage/Network/IaaS/PaaS)

Exastro

Automation changes QCD and Tasks/results.

QCD (Quality - Cost - Delivery)

Manual labor— QCD Reform from Automation.

Tasks and Results

Tasks and Result changes can be divided in

these 4 groups — 1.No changes 2.With

°

Do £
o

Automation
Preparation

Automated

(one operation)

=]

Manually
(one operation)

Preparation

Exastro

1st time 2nd time 3rd time 4t time

changes 3.New 4,Deleted

Before Task

Task —>
Automation ;RES“'tl

®No changesv ®New

—>

N e Wy BNy
Automation [Result Result. Result
@With changes @Deleted

Automation Preparation
Step 1 : Central management of the system info.
Step 2 : Actualize Automatic Execution.
Step 3 : Connect Design info and Automated Executions.

Ay Exastro

Step 1 : Central management of the system info.

Ay Exastro

Step 1 : Central management of System info

lihelnexslideslexplainsithelsktasksliniSteph®

Comira _ Tasks
Centrally Manage Tasks

design info Collect DesignInfo’s

managameant fornms

Normalize
Desian Info

Construct Exastro
IT Automation

(CMDB)

nput
Information
into CMDB

Leveraging
CMDB

Exastro

14

Step 1 : Central management of System info

Tasks Task Explanation
Collect Design info's Each team leader collects the design info from their own
management forms eams and share it with each other.

Normalize

Design Info

w
)
QII_II

:_: - Construction Operation = — Construction Operation =

[Construct Exastro) ;J team B team A = ;J team B team A =
IT Automation ch tea : :

(CMDB) Construction D n inf Operation Construction Operation
e team A sign i 0 t eam B teamA @00 Lesuea, .. team B

(Input)

Information s
into CMDB Automation®,

T Each team’s leader Team F Shared

p : N design info Check
Leveraging @ Clarify the purpose and decide the scope of the ;:;‘;

CMDB management

@ There are several ways to manage existing design info
® Example) Design info collected from an actual project.

L

Exastro

Step 1 : Central management of System info

Clarify the purpose and decide the scope of the
Tasks @@ management

Collect Design info's First, one should clarify the goal. After that, we can decide the scope
management forms of the design information we want to collect. A more specific

File M
example can be found below . . ile _a-;agement
() Sbphcation

Normalize < _
Design Info 1) IP Address IP, Segments, Etc. conetruction Middleware
Management / \
T M t
- N 2) Assets Management Serial Number, License, etc. oS payou
Construct Exastro e et P Hoct . VM
IT Automation erver construction , Host name, etc. IP management
i Hypervisor
\ (CMDB) / 4) NW device Interface Numbers, VLAN, etc. PNS maintenance — :
B construction Physical machine.
: —_— 7
I fIanItt. 5) VM Payout Hypervisor, VM name, etc. oy bewiee —_Network
nrormation —
into CMDB 6) DNS maintaining StIES server, domain name, o
([Leveraging A Problems such as collecting too much or unnecessary information
CMDB may occur if there are no clear goals.
\ v If there are multiple goals, we recommend to nhumber them by

priority and create the CMDBs in order.

Exastro

Step 1 : Central management of System info

Tasks @ @ There are several ways to manage existing design info

Collect Design info's
management forms

Normalize
Design Info

TJ

[Construct Exastro)
IT Automation

(CMDB)

(Input)

Information

into CMDB
4 N
Leveraging
CMDB
\, J

Exastro

Many projects uses Excel or Word formats to manage Design info, so
let’s start with collecting those files. If you are storing design info in
databases, you might consider dumping it in CSV Format or to link
the database directly with Exastro IT Automation.

- CSV input
pE— A — O
/ DB Server

Excel

- ITA + Ansible Running machine

Word

Depending on the project, users might have to gather information
straight from a running machine (such as a VM) instead of the
design info documents. In that case, we can use Exastro ITA and
Ansible to easily collect data from the machines.

Step 1 : Central management of System info

@ ® Case ~ Collecting Design info from a real project.

Collect Design info's
management forms

Normalize
Design Info

TJ

[Construct Exastro)
IT Automation

(CMDB)

(Input)

Information
into CMDB

4 N
Leveraging
CMDB
\, J

Exastro

Here is an example of how Construction management of servers and
network devices can be achieved. In this case, the following design info
was shared among the team leaders in order to easily identify the
scope of the outage impact of the service.

Server G - Server list
- Software installed on the server list

Network G - IP address list
- Network device list
- Network route list

Storage G - Path list

- Storage disk list
Operation monitoring G - Message list
Business G - Components list

- Server components list
- Communication conditions list

For more details regarding this case, please refer to the URL below.
https://exastro-suite.github.io/it-automation-docs/case.html

https://exastro-suite.github.io/it-automation-docs/case.html

Step 1 : Central management of System info

Collect Design info's
management forms

Normalize
Design Info

T)

[Construct Exastro)
IT Automation

(CMDB)

(Input)

Information

into CMDB
4 N
Leveraging
CMDB
\, J

Exastro

. Task explanation

The team leaders normalizes the collected design info in a table format

by eliminating duplicates, unifying names and breaking up redundant

info.

Collected
design info

- Deleting Duplicates
+ Unifying Item names
- Cleansing

- Etc.

Team leaders

@ @ Sort the design info
@ Organize the design info items (Columns)

Server type

Server

Web server

DB server

AP server

Serverldevice list

OS type

oS

RHEL7?7

RHELS8

WinServer2019

\4

Server Model |Host name |OS
Web server |#1 web001 WinServer2019
Web server |#2 web002 RHELS
AP server #1 apsvr001 (RHELS
CommunicationyJist (allowed)
Commho. | FROM Protocol TO
) Web server#1 |[https tcp AP server#1
@ AP server#1 ODBC |[tcp DB server#1

Step 1 : Central management of System info

@ @ Sort the design info

Normalize
Design Info

T)

[Construct Exastro)
IT Automation

(CMDB)

(Input)

Information
into CMDB

Each team’s collected design info is sorted according to the following

4 N
Leveraging
CMDB
\, J

Exastro

@ If the info is enclosed to single teams or if it is shared with other
teams.

If there is info linked with other teams, separate it from other info. By
doing so, we can share the info with each others.

@ If we're making the user select info from a pull-down menu in
Exastro ITA.
We divide the info into two categories when registering design info. Info
selectable from pull-down menus and info that can be entered manually.

Info selected from pull-down menus will have their values registered as
“Master”.

® The relationship of the design information.
We must decide the relationship (dependency) of the design info. This is
important, as it directly affects the order in which we create and
register design info. For example, in order to create a “server list” , we
first have to create and register “OS types”.

Step 1 : Central management of System info

@ @ Organize the design info items (Columns)

Collect Design info's
management forms

Normalize
Design Info

\T)

[Construct Exastro)
IT Automation

(CMDB)

(Input)

Information

into CMDB
4 N
Leveraging
CMDB
\, J

Exastro

Eventually, the design info is collected in a table format. Therefore,
it is necessary to organize what the “column” in the table should be
according to the points below.

@ Unification of the settings info item names (table column
names).
Different teams often have different hames for the same
information. For example, the server team might call “IP
Address” for just “IP”, while the network team might call it for
“ip_addr”. In this case, we need to have the teams use the same
name so the information can be counted as shared design info.

@ Grouping the settings info.
In many cases, settings info becomes more readable if it is
grouped up. To give an example, by grouping “IP Address”#
and “Port Number” into “Connection Information”, we can
improve both the readability and maintainability.

Step 1 : Central management of System info

Task explanation.

Based on the normalized design info, create a “table list” and a “table
frame” to store the design info in the CMDB in Exastro IT Automation.

Table Frame

Normalize
Design Info EXastro Table list Server type /' OS type
T IT Automation = Menu
[Construct Exastro Server type '
IT Automation T | < 05 type =) — o |
CMDB) erver odel [Host name type
\(—) Server device list type
e e
Input 7 (Allowed) ~
Information < —
into CMDB Comm. |FROM Protocol TO
; No.
4 N
Leveraging
CMDB - o=
. J @@ Put restrictions on the columns to prevent Check

input errors in the design values. page

Exastro

Step 1 : Central management of System info

Put restrictions on the columns to prevent input errors in the
Tasks design values

Collect Design info's Keeping the CMDB clean is impossible there are spelling/input
management forms errors when registering design values.
, : \ By setting restrictions to the table columns in Exastro IT
Normalize Automation, it becomes easier if there any spelling/input errors
Design Info when inputting new design values. As a result, the CMDB can be
- = kept clean. Cti Restriction
[Construct Exastro Restriction [l RE=CHON Pulldown
IT Automation Letters, n.n.n.n format

Hyphens , n= number selection

&) Periods () Pulldown

I_nformatlon web-server 10.0.10.100 Windows Server 2019 j

into CMDB

= log-server log-server RHEL 8 /@‘

4 N\

Leveraging DB_server 10.0}(Error] Windows Server 2019
. cMDbB) . ﬁ Error] ----- Windows Server 2016

RHEL 8

Exastro

Step 1 : Central management of System info

r Task explanation
E

very team registers the design info to the CMDB

] Table
Normalize Server type OS type
- H y
Design Info EXastro Table list Web server / RHEL7
T IT Automation = Menu DB server RHELS
4 AP server WinServer2019
[Construct Exastro) —_ Server type i T
IT Automation < 0S type
(CMDB) tSyeI:;/er ::od Host name | OS type
o
—! Serverdevice it Web server | #1 |[web001 | WinServer2019
Comm. list Web server | #2 |[web002 RHELS8
Werae 7 (Allowed) AP server—|#1_|apsvr001 | RHELS
Information < —
into CMDB Comm [FROM Protocol TO
::lllll:: s.No.
- N @ Web server#1 |[https [tcp [AP server#1
Leveraging @ AP server#1 |ODBC [tcp |[DB server#1
CMDB
\ J

Check
@@ Use Excel to register in batches. Daae

Exastro

Step 1 : Central management of System info

The tables in Exastro IT Automation can be downloaded in Excel
format. We can register design info more efficiently by
adding/updating the information directly to the Excel file and then
uploading it.

Normalize
Design Info EXastro EXastro EXastro

IT Automation

IT Automation ““ﬂ IT Automation “““

T)

[Construct Exastro)

IT Automation
(CMDB)

— - 7
(w) Changes are
f+ céa /cx reflected.
- : .c
e)| JaILE g-,
| o o
—- | o: -
p N R IO I
Leveraging
CMDB N

Exastro

Step 1 : Central management of System info

Task explanation
Refer and update the design info to suit the final goal.

Collect Design info's Additionally, it is possible to store the setting values by downloading it
management forms as an Excel file.
C Normalize | _[Referring and Updating CMDB] [Submit the final product
Design Info as an excel file]

)

TJ We want to see the EXastro
[version info for all 1 ITAutomation (Attention)

[Construct Exastro) the servers that are EXastro — The client must
IT Automation getting patched. / TEsaRom AR @ have agreed to
this in advance.

l

\&J Operation .l
Information server list now that %

l team
Input Let’s update the I /
there are additional . @
web servers. r Deliver the

into CMDB _
:—: Server final product R
[:) construction team :
Leveraging Project Client
CMDB L .
\ J @@ Case~ Investigating the scope of service Check

outage impacts. page

Exastro

Step 1 : Central management of System info

Tasks @@ Case~ Investigating the scope of service outage impacts.

Collect Design info's
management forms

Normalize
Design Info

TJ

[Construct Exastro)
IT Automation

(CMDB)

(Input)

Information
into CMDB

()
Leveraging
CMDB
. J

Exastro

Here, we will show an example of using
CMDB to investigate the impact of a
service outage.
Large-scale carrier systems require a
g lot of man-hours to investigate service

impacts of both expected and
unexpected equipment outages.

Construct
CMDB

By managing the configuration of the
system, it is possible to automatically
predict the impact of equipment
outages.

uonn|os

Don’t have to pay 800 000 Yen per
investigation. The annual cost was
reduced by about 94 mil. Yen.
(checked 120 times)

199444

f%

If X machines
stops for
Y seconds--

This will affect
Service A and
Service B

ojul ubisap si1931s169y

A9 EXastro

IT Automation

Service
sequence|| |Path list

Servett

list|| NetW/T giorage

devi Device list

Service
sequence|| |Path list

Server

list Netw/|
devil Storage

Il Device list

For more details regarding this case, please refer to the URL below.
https://exastro-suite.github.io/it-automation-docs/case.html#case003

https://exastro-suite.github.io/it-automation-docs/case.html#case003

Step 2 : Actualize Automatic Execution.

Ay Exastro

Step 2 : Actualize Automatic Execution

mhelnextslideslexplainsitheloitaskslinjote ppy

assi
automated
tasks

Miake
Operations
more detailed

Prepare Ansible

Step 2 files (Playbooks,
Automate orstruct Job

flow
(Symphony)

Exastro

Step 2 : Actualize Automatic Execution

8 Classify A

Task explanation

Organize the manually executed tasks and select which ones to automate.

automated If the organized tasks crosses more than one team, the team leaders will do the
tasks coordination.
p :fMa = \ Shared operations
\
Operations . - Implement Monitor agent NW Vi nstruction
moI:e detailed Server construction - Communication device constructio
/ \ check(ping) \
. . : - Distribute hosts files - IF setti
(Prepare Ansible . 82 3‘;3;1_25 - ote gy Lf\le\l ings
files (Playbooks, _ construction

- Communication
access settings
- etc

etc.) - SELinux settings

- firewalld settings
- T
— Construct Job) - etc
flow \ J

__(Symphony) |

J

NG

(" Execute Job flow) Team leaders
(Symphony)

Forameters are @ Categorize tasks with “just right” granularity. Check
\ ~ @ Estimate the effects of the operation and arrange them ;ae;;
by priority.

Exastro 30

Step 2 : Actualize Automatic Execution

@ @ Categorize tasks with “just right” granularity.

(Classify — Categorize the tasks that are getting automated with “just right” granularity.
UL For example, for server construction, the example in the bottom right has too
\T,tasks much information. On the other hand, the one on the left is too broad.
(Make) As can be seen in the middle figure, the “OS Settings” illustrates the perfect
Operations amount of granularity.
more detailed

:—: Server Too
”TD_repare Ansible) anstruction m
files (Playbooks, . OS settings

* Log in with SSH
- Change to super user

etc.))

- Execute .yum

 Construct Job) and update 0S

flow - Distribute Hosts files
Symphony)

(—) - Copy hosts in scp
- Backup old hosts
- Replace hosts

([Execute Job flow) :
(Symphony) : \ /

\ reZ?srtaeTeedten:zszzuy | Implement monitor agent

- Start installer
- Insert license

Exastro

Step 2 : Actualize Automatic Execution

Tasks @@ Estimate the effects of the operation and arrange them by priority

(CIaSS|fy) Estimate the effects of the operations and arrange them by priority. Once we know the
automkated effects, we can prioritize the tasks and decide whether to automate them or not.
tasks Estimated effects includes the number of times the operation is used per year, the number
- Make N\ of target devices and the number of man-hours per project. If the number isn't a
. quantitative number, it is possible to sort them by “Large”, “Medium”, or “Small". The
Operations following is an example of an organized list of operations with priority.

more detailed

Prepare Ansible
files (Playbooks,

Operation Times Number of | Man-hour Priority
used devices per
worker

OS settings 10H High Requires 2 persons
etc.)
Distribute Hosts files 200 50 1H 0.5H Middle Updates 4 times a year
COI‘]StI‘UCt Job Implement monitor agent 30 30 5H 5H Low
flow _ .
Update Web contents 600 5 1H 1H High Updates 10 times a
(Symphony)) month
Summarize Access log 60 5 2H 2H Low Executed at the end of
[Execute Job flow) the month
(Symphony)
Parameters are As a general rule, automation tends to be more effective for common tasks, since they are

\ registered manually

used more often per year. Additionally, by reviewing the granularity of the tasks, we can
find out which tasks are common.

Exastro

Step 2 : Actualize Automatic Execution

(Classify)

Task explanation

Make the categorized tasks more detailed and reduce them to more specific

automated operations.
tasks Detailing operations can be based on existing procedures and other documents.
- M?a a N p OS settings <
Operations Categorized tasks Detailed | Log in with SSH
more detailed _ P Change to super user
OS settings - Execute .yum and update OS
Prepare Ansible istri i : - etc---
filesp(PIaybooks Distribute Hosts files Detalleﬂ _ Distribute Hosts files -
14 g
etc.) Implement monitor - Copy hosts in scp
agent - Backup old hosts
(Construct Job - - Change hosts
flow < _ | - etee Implement Monitor agent.
ummarize access
(Symphony) - Start installer

= = log

N
Execute Jobflow | 0 seeeeees
(Symphony)

_
Pa Emeters are registered mantjnlly .] Check
@Backup, Run operation and Acquire backup. pext

- Insert license
. etc...

r

Exastro

Step 2 : Actualize Automatic Execution

@ @ Backup, Run operation and Acquire backup.

(Classify)

automated
tasks
(Ma!e)
Operations

more detailed

Prepare Ansible
files (Playbooks,
etc.)
= =
 Construct Job

flow

__(Symphony) |

(" Execute Job flow)
(Symphony)

Parameters are

\ registered manually

Exastro

We recommend to structure the detailed operations in sets of 3

(2) Run (3) Acquire

This configuration ensures that backups and evidence are available
at all times, meaning that the operations can be safely re-used.

As an example, the following is the configuration of a procedure that
distributes hosts files.

Specific procedure

(1) Backup Takes back up of current hosts files.

(2) Run operation Copies new host files to the designated
place.

(3) Acquire Saves successful name resolution

evidence results.

Step 2 : Actualize Automatic Execution

Task explanation

(Classify Prepare Ansible files (Playbook, Etc.) to execute the
aufomated procedure. You can create new one or use existing ones.
. . Ansible files is a set of
. . . files required for
(Ma!.e 1 _[Ansible file preparation] [Ansible files operation to run.
Operations registration] | : Mayoeok
more detailed - Role
egister - Template
" Prepare Ansible H = \R\g‘
files (Playbooks, Ey Exastro
\ etC.) 1 Create new 1Reuse IT Automation |
n = from user manuals existing files 1
(Construct Job) L L {gi;ter _LAnsibIe fileg?
flow I_L : - I—L : :
(Symphony) Ansible fllesH Ansible f“eSH
(Execute.Job flow) @ @ Reuse any existing files available
ymphony) @ Variablize any values that changes for each operation ru
__registered manually ® Keep similar processes concise by repeating.

@ Create a standard configuration for templates.

Exastro

Step 2 : Actualize Automatic Execution

@ @® Reuse any existing files available

(Classify) , . . .
You don’t need to create every part manually in an Ansible file. If

automated e) ="y)
tasks you have any existing files, it is possible to use parts of them to
T create other files more efficiently.
[Make h
Operations The following example illustrates how to build a web server by using

more detailed Ansible files from various sources.

~ OS settings

" Prepare Ansible | _
files (Playbooks, = Ansible file? J From the internet
. etc.) o
! ') ~ Distribute Hosts files
(T 5 \ i r—e | @ : .
onstruct Job a3 < Ansible f“eH J ala From an earlier project
flow 2=
(Symphony) | s - Implement monitor agent
- D |
 Execute Job flow) ® 8" Ansible file? | @ From Monitor software vendor
Symphon c
éarzme'zers 3‘2 o] - Web server construction °
registered manually o l 2 | From in-house engineering department.
h > S Ansible file? J £ g g dep

Exastro

Step 2 : Actualize Automatic Execution

Tasks @ @ Variablize any values that changes for each operation run.

(Classify) . .
Some values, such as the host name for the machine, will change when the

auttc;:lfsted operations are executed. If you embed these values as fixed values in the
T/ Ansible files, you will need to modify the files every time you run an operation.
(Make) In order this, we use “variables” in Ansible files.
Operations
more detailed Playbook before variablization Playbook after variablization
"Prepare Ansible - hostname: - hostname:
files (Playbooks, name: webOl name: {{ VAR hostname}}

etc.)

The playbook on the left has a fixed host name,”web01”. If we don’t change it,

(Construct Job we will need to modify the playbook in order to set up “web02” on another
flow machine.
__(Symphony) |
On the other hand, the playbook on the right has the host name converted into
(" Execute Job flow) a variable, {{ VAR_hostname }}. By setting specific values for the variables
(Symphony) separately, the variablized parts can be replaced with any expected values when

Parameters are . .
| registered manually the operation is executed.

Exastro

Step 2 : Actualize Automatic Execution

@ 3 Keep similar processes concise by repeating.

(Classify)

If the tasks are organized to be executed automatically, you might see that

auttc;:lfsted some similar tasks are used multiple times. In those cases, we can keep the
T/ process concise by using repetition. In the case of Ansible’s Playbooks, we can
- Make N use the “Loop” instruction.

Operations The following is an example of a playbook that creates three directories: /dirl,

more detailed /dir2 and /dir3. The playbook on the left runs 3 different processes. On the

— : | other hand, the one on the right uses “loop” to repeat the process, which makes
Prepare Ansible it more concise and easier to maintain.
files (Playbooks,

etc.)

Not repeated playbook

- file:
—Construct Job) path: /dirl Repeated playbook
flow state: directory - file:
___(Symphony) | - file: path: ”{{ item }}”
P ‘_' _ path: /dir2 Repeat state: directory
EX?SC\L/Irtlfp::\c:)?‘nfll;)w state: directory loop: {{ VAR dirs }}
P§1rameters are - file:
\ registered manually y)
path: /dir3
state: directory

Exastro

Step 2 : Actualize Automatic Execution

Tasks @@ Create a standard configuration for templates.

(Classify)

In situations where setting files are distributed to multiple servers,

automated
tasks the contents of the files are in many cases almost the same, which
T only some of the values being different. In these cases, we can be
[Make h more efficient by creating setting files using formats.
Operations

In Ansible, Files with .j2 extensions are “Format” files. Similarly to
p o playbooks, formats can also use variables. The following is an
HEPETE AR example of an Apache settings file being created. The blue text are

files (Playbooks, variables and the red text are values after it has been created.

etc.)

= =
(Construct Job)

more detailed

<VirtualHost *:80>
ServerName www.test.com

httpd.conf.j2 (Format)

Tlow <VirtualHost *:80> DocumentRoot /contents
__(Symphony) ServerName {{ VAR hostname }} </VirtualHost>
DocumentRoot {{ VAR docroot }}]
[Execute Job flow) </VirtualHost> <VirtualHost *:80>
(Symphony) ServerName www.dev.com

Parameters are .
| registered manually) DocumentRoot /public

</VirtualHost>

Exastro

Step 2 : Actualize Automatic Execution

. Appendix : Managing Playbooks

(Classify A This section describes how to manage Ansible materials
automated (Playbooks,etc.), using problems and solutions that actually
tasks happened as examples.

(Ma!e)

{ BLEM
_operations @ The same playbook exists across multiple directories.
@ Playbooks with different contents have the same name.

"Prepare Ansible ® There are differences in playbook contents between

files (Playbooks, the version management tool and ITA.

etc.)

’Tonst-ruct Job) MD Create a directory for common processes.

flow @ Decide on a nhaming convention in advance and don’t
_(Symphony) allow files with same name
—Execute Job flow) 3 Manage using a version management tool and
(Symphony) CICD tool.

Parameters are
\ registered manually

Check
next

page

Step 2 : Actualize Automatic Execution

pROB\—EM ® The same playbook exists across multiple directories.

4 Classify) In Ansible Legacy, one Playbook was used for Multiple movements, but when we

automated tried to manage it in a shared directory, because a directory was created for

tasks each movement, multiple directories contained the same file

7 M aq !e \ Exastro Playbook File collection Movement details Shared SV | Shared Directory

Operations : 1. Pre.yml(preprocess) Add Change share/add/ || share/add/

P 2. Add.yml(add) [J\ Pre.yml Pre.yml P | Pre.yml
. . .y . . re.ym .
more detailed 3. Post.yml (preprocess)] Add.ymi change.yml Add.yml change.yml
o : 4. Change.yml (Change) Post.yml || Post.yml Post.yml Post.yml
Prepare Ansible)

files (Playbooks,

e

tc.) | @ Create a directory for common processes.

— Construct Job) In order to prevent situations like this,
flow if the user wants to use the same playbook for multiple movements,
(Symphony) we recommend creating a shared directory for common processes.
77
Shared SV Shared Directory

[Execute Job flow)

(Symphony) share/OOQOshared process/ share/addO 0O/ share/changeOO/

Parameters are Pre 1 Add 1 change 1
\ registered manually - ym -ym ge.ym

Post.yml

Exastro

Step 2 : Actualize Automatic Execution

Tasks
(Classify)

automated
tasks
(Ma!e)
Operations

more detailed

"Prepare Ansible
files (Playbooks,
etc.)
= =
 Construct Job)
flow

__(Symphony) |

(" Execute Job flow)
(Symphony)

Parameters are

pROB\—EM @ Playbooks with different contents have the same name.

Two files with the same name but different contents was accidentally created in Ansible
Legacy Role.

Therefore, altering the “add” Pre.yml also changes the “change” Pre.yml, leading to a bug
occurring.

i Pre.yml! (add)
E,?\(?StEo Movement list Role package management ' n\;me: Start add process
utomation |l - 1 A roles (add) roles (change) debug: “Start adding” The
2. Change Ltasks Ltasks | > contents L

- Pre.yml - Pre.yml Pre.yml (change)

- Add.yml - Change.yml - Name: check for files

- End.yml L Post.yml stat: /var/tmp/test.txt

register: RegStat

@ Decide on a naming convention in advance and don’t
allow files with same name

Ansible Role allows for files with same name but different packages.

However, as this often leads to bugs, we recommend deciding on a haming convention and forbidding files
with same name.

Example: Playbooks are named in this format "Process_XXX.yml"

Movement list

EXastro Role ppackage management

\ registered manually

J

Exastro

~ AddFile_Add.yml
- AddFile_End.yml

IT Automation 1. Add file roles (add) roles (change)
2. Change file “tasks “tasks
- AddFile_Pre.yml L ChangeFile_Pre.yml

- ChangeFile_Change.yml
- ChangeFile_Post.yml

Step 2 : Actualize Automatic Execution

gLEM ® There are differences in playbook contents between
PRO the Version management tool and ITA.

Tasks

4 Classify N When adding and repairing Playbooks, we upload them both to ITA and a version management tool
automated (Git, and such), but I forgot to upload it to ITA, meaning that the fix/new one wont get displayed.
‘%SV/ Local Exastro Playbook file coll. Version mgt tool
IT Automation XXX/addOO/
(Ma e) \\Pﬂ; [> ;: Zaed.yyr::‘lll xxx/OOcommon Add.yml
Operations 3. Post.yml process/ P
more detailed 4. Change.yml re.ym XXXx/change
0 Forgot to upload 9ey Post.yml PN change.yml
“Prepare Ansible §
files (Playbooks,

etc.)

= =
(Construct Job)

3 Manage using Version management tools and
CICD tool.

We recommend creating a tool that automatically uploads to ITA after committing when

S ro;v using Version Management tools.
(Symphony) Example: Using CICD to detect when something is added to GIT and upload the file to ITA.
(Execute Job flow Local Version mgt tool CICD tool exastro] Playbook file coll.
P(Svmphony) 750 i 1. Pre.yml
arameters are XXX common . - Ny
(registered manually Pre.yml $ process/ <::] ﬁzedl,lg;cc.letgatgvlv_:_l:\ 2. Add.yml
Pre.yml P 3. Post.yml
/ 4. Change.ymi
Post.yml Detect Upload changed
file to ITA

Change

Exastro

Step 2 : Actualize Automatic Execution

Task explanation
Create a Jobflow in IT Automation.

(Classify)

the orbs into the

= =
 Construct Job \ =7 , Movement Area

automated
tasks [Jobflow Creation screen]
Edit Symphony
(Ma!e)
- _ dass ID Auto numbering Nme Display filter
operatIOPS :.'url::rl:l:l
more detailed [Soect B o e
Prepare Ansible Movement Area
files (Playbooks, D D
tc. Remove Movements
e_)) /I \ by pressing the X button ﬁg%gg;?&egﬁz dropping

f|0W Ca—nchanqe order
(Symphony) of Movements N
"7 © - ¥J J

[Execute Job flow)
(Symphony)
Parameters are
\ registered manually

@ Understand the process of creating Jobs and | T

next

Jobflows. page

Exastro

Step 2 : Actualize Automatic Execution

@ @ Understand the process of creating Jobs and Jobflows.

(Classify)

automated
tasks
(Ma!e)
Operations

more detailed

Prepare Ansible
files (Playbooks,

etc.)

= =
 Construct Job
flow
_(Symphony))

(" Execute Job flow)
(Symphony)

Parameters are

\ registered manually

Exastro

The operations that we categorized in the first task of step 2,

Classifying Automated Tasks, is called a “job"”. A “Jobflow” is a string of

several jobs that are executed in a specific order.

Web server construction procedure

Jobflow (= Symphony)

Movement
Distribute

hosts files

Realized with Movement
Exastro Implement

web server
Movement

Transfer
contents

|
Ansible filey?

]
Ansible file?

]
Ansible file”

In Exastro IT Automation, jobflows are made possible with the
“Symphony” function, and “Jobs” by the “Movement” function.
By linking an Ansible file (Playbook, etc.) to a movement, it becomes

possible to run operations with real effects.

Step 2 : Actualize Automatic Execution

(Classify)

automated
tasks
(Ma!e)
Operations

more detailed

Prepare Ansible
files (Playbooks,

etc.)

= =
(Construct Job)
flow

__(Symphony) |

(" Execute Job flow)
(Symphony)

Task explanation

Link Jobflow and Operation and Automatically execute the
Operation.

Parameters are
 registered manually

EXastro

IT Automation

. Jobflow Operation
T[], = e

m eooe ecee ecoe l-h >

? | | < o

2 R — |

o 8

n 6

=

@Understand the relationship between Check

Operations and Jobflows page

Step 2 : Actualize Automatic Execution

__Tasks__JleoiNT

@®Understand the relationship between
Operations and Jobflows

(Classify)

automated An Operation links a target device and specific setting values to a

tasks Jobflow. The following illustrates a simple Jobflow that transfers
T files to a server.
[Make)
Operations

Jobflow Operation

= Target Receiver
= Device
Transfer

more detailed webserver

data.txt

Prepare Ansible
files (Playbooks,

. etc.)
— ~t_t'j = With the help of the Operation, “Target Device” ,"Sender” and
onsff(:'vf, ° “Receiver” gets linked to the Jobflow. The combination above

(Symphony) deploys Data.txt to the web server.

v
/etc/conf/data.txt

webserver data.txt /etc/conf

e e By changing the inside of the Operation, we can choose to send
(Symphony) different files to different target devices.

Parameters are
 registered manually

Exastro

Step 3 : Connect Design info and Automated Executions.

Ay Exastro

Step 3 : Connect Design info and Automated Executions

{ iihelfollowingfslideslexplainsithef2ftaskslinfste pi3* }

Step 3

§ Link centrally managed
n arlable . . i
and Specific design info and automation

Value > @
Run Jobflow CMDB Df:fign @
(Symphony) 7 @

Step 3 : Connect Design info and Automated Executions

Tasks . Task explanation
" Link Variable Use the “Substitute automatic value registration list” function in
and Specific IT Automation to link the parameter sheet values and the job
i: variables.
Run Jobflow EXastro
\ (Symphony))y VAR_value

Link formats
- Value

- Key

- Key-Value
\n VAR_valuel
VAR_value2

VAR_valuel
VAR_value2

am&amny/q ns

© How to use Value-types —
@ How to use Key-types next
® How to use Key-Value types

Step 3 : Connect Design info and Automated Executions

(Link Variable)
and Specific
Value

— -

Run Jobflow
(Symphony)

\. J

Exastro

@ @ How to use Value-types

Value type is a basic type and links the values inside the chart to the

variables. It can be used for many things, su
settings and command line arguments.

ch as for system

The following illustrates how variables are linked to each of the

server type settings.

Time | Threads SELinux
out
webl enforcing
enforcing

| web2 60 200
db-server 30 50 permissive

Jobflow |

VAR_timeout: 60
5{ VAR_thread: 200
VAR_selinux: enforcing

In the example above, each value in “web2"”
variables.

v

Is linked with the job

7

L

Link Variable
and Specific

Value

— -

Run Jobflow
(Symphony)

N\

J

Exastro

Step 3 : Connect Design info and Automated Executions

@ @ How to use Key-types

Key type is used to tie table column names to variables. It is mainly
used as a flag. The following shows an example on how variables

are linked to running services on a server.

| __Bystemctl Service name

z ‘ - -
«@ mariadb |(firewalld
| Ny A

yes

I web?2 yes
db-server yes yes

web1

In the example above, “Web2"” has the columns, “httpd”
and "firefalld” set to “yes”, so the column names will be linked to the
values of the variables and then execute the job.

Jobflow

e
T

R_service: firewalld

AR_service: httpd

Step 3 : Connect Design info and Automated Executions

@ 3 How to use Key-Value types

(1 1)
';'25 \S,gzg?ilf Key-Value types can be used to tie both they key and value to a
Value variable. The following example shows how to set environment
~d variables on the server using the Environment variable definition
Run Jobflow table.
(Symphony) Jobflow |
\ J
| =
. . VAR_key: http_proxy
webl /bin:/usr/bin p://hos VAR_value: http://host
~web2 /bin:/usr/bin |
db-server /bin:/sbin http://proxy *

In the example above, the column name is the environment name.

Both the environment variable name, “http_proxy”, and it’s
value ,"http://host” are linked to the variable.

Exastro

Step 3 : Connect Design info and Automated Executions

Task explanation

—Tink Variable Link Jobflow and Operation and automatically execute the operation.
and Specific Users can create systems by using these two actions:
Value Edit parameters— Execute.

— S—"

Run Jobflow
(Symphony)

\. J

- -

Step 1 : Centrally manage
design info

0 Exastro
IT Automation © redint
Ansible fartomation
Design management Automatic setting Platform
web *¥* Terraform [services |

I
Multiple user interfaces Central Multiple automation Many target device types
(Web, Spreadsheet, Rest API) management softwares (Server/Storage/Network/Iaa5/Paa5)

pppp et

Exastro

« Implementing automated SI
Effects and Estimations
Post-Automation Process changes and results.

Ay Exastro

Effects and Estimations

Ay Exastro

Estimate the effects of the operation (repost)

Estimate the effects of the operations and arrange them by priority.

Once we know the effects, we can prioritize the tasks and decide whether to automate
them or not. Estimated effects includes the number of times the operation is used per year,
the number of target devices and the number of man-hours per project.

Operation Times Number E Pr|0r|t
used of hour per
devices worker

OS settings 50 10 High Requires 2 persons

Distribute Hosts files 200 50 1H 0.5H Middl Updates 4 times a
e year

Implement monitor 30 30 5H 5H Low

agent

Update Web contents 600 5 1H 1H High Updates 10 times a

month
Summarize Access 60 5 2H 2H Low Executed at the
log \- / — end of the month

If the number isn’t a quantitative number, it is possible to sort them
by “Large”, “Medium”, or “Small". The following is an example of an organized list of operations
with priority.

Exastro

Case: Constructing Network Device(1/2)

| Overview
® Adding more network devices in a carrier type system

® Automate the operations of adding virtual IP and
compare the operational costs of with and without automation.

] Construction of the automated operations.
®Refer to the picture on the left for the construction.

®Total of 30 network devices [Adds]
policy

Adds VIP
Adds User

Load
balancer

| Automation construction and tasks | { . Fire
® Add Virtual IP and Member to Load balancer.

® Add policy to firewall
® Add static-route to switch.

Exastro

Case: Constructing Network Device(2/2)

| Increase/Decrease in man-hours before and after automation + added work.

Basic Detailed Operation

Dt etien design Production Evaluation

Defining

Hours(Per
worker)
Hours(Per
worker)

Increase/Decr
ease(%) (1 84%) (l34%

iV [o [=Ys BT1061d [@IConsider Automation Register CMIDB Run Jobflow

| Return on Investment Concept.

® Man-hours used for Automation (Initial) : 123.4H 700
-Step1:44.7H Step2:63.5H Step 3:15.2H c00 — Before — After
® Hours before Automation : 143.8H = After Automation : 95.2H 500
« The number of man hours is reduced by34%. Additionally, the investment = 400
returns profit after the Third time (including the Initial stage) =
@ 300 Investment

returned
after 3rd time.

® Depending on the case, preparation for automation and implementing the automation
may be done separately or at the same time. In this case, they were done separately.

0 ’//
100 /
Individually implemented Implemented at the same time 0

Initial 1st time 2ndtime 3" time 4t time

Graph of Man-hours (costs)

I Initial : I 1st time I 2nd time 3rd time 4th time

Initial 15t time 4th time

lZ'"1 time 3rd time

‘-—' ‘——I ——————

Post-Automation Process changes and results.

Ay Exastro

Defining Requirements

I . No Might have
I Changes In QCD per phase Legend' changes @ Better ad?jitional work Explanation

befining Design At the defining stage
D @c|pjJQjc|DpJQ/c|D]Q/C|[D]Q C|D]|Q|C D PRI RNIIes
Before |© © OO OO|O © ©|l0©O|© ©OO|O © ©|© © © Automation should be

After © © @'@ ® @l@) @l@ @@l@) @l@ © @ applied, etc. needs to

be discussed and

N i -
| Product and Process changes cgenq: Cﬁanges \C/ﬁ';:ges Add (Work) D& work ?_ﬂree? UDOE- 4D
erefore, C an

U iy -
3 — — will increase.
—>» . —> requirement —>
5 & Requirements definition doc.
§: ___
(] ?5’ - Requirement list - Definition
£
-+
(1]
A <With Changes> <No Changes>
o Confirm Create
8 —» requirements > requirement >
?h » (Might use Automation) definition doc.
R
I - Requirement list - Definition list
E - Results
(g
(/]

Exastro

1 . 0 Might have
| Changes in QCD per phase tegend:O .. © st & iionivon Explanation

Since the contents
Qc|p Qjcip qjcipjojcip|oiciDp|Q|ciD|Q]C|D I lteRTRel=:
Before |© © OJ© OO0 © ©|lO0 ©©O|© ©O|O ©©|© © © incorporated into the

ater |© GO ©0|@ ©@®|loo 0| ®@®|o ©©|® ®® Design phase already

Is decided in the

N i - i
| Product and Process changes cgenq: cr?anges \C/ﬁ';:ges Add (Work) E;e Work Er:eparatlon Phall(sﬁl .
ere is no work to be

Production

Defining Design Det.Design

-
3 p——— added here.
0 reate Design
@ 2 +[Document]_>
S e T
(] ?5’ - Desigh Document
£
-+
(1]
o <No changes>
o .
0 Create Design
> & _’[Document]_>
=
=~
@

- Desigh Document

s)nNsay

Exastro

Det. Design

| Changes in QCD per phase Legend:©',. .. @ seter

Deflnlng

Det.De5|gn

Op. Design

Production

Might have
additional work

Test

Q b olciplojcip]olciD]QlC|D

Release

Before @@@I@@@ ©OOlooo|looo|looo|lo©©
ater |0 gFHo 0 ojl@@®loco|e@®|lovo|e ®®
N .
| Product and Process changes | gena: ehanges (7o) ‘C’Y;;';ges- Add (Werk] ° work
)
S Parameter Create Create operation
(;IDJ § > [design] 4 [Parameter sheet] —»> [procedure]_>
A7)}
o 1
o ?5’ - Parameter design - Parameter sheet - Operation procedure
g document
73
9 <No changes> <With Changes> <Delete>
8 Parameter Register parameter]
> 3 > design > to CMDB J >
=
o T T
T - Parameter design CMDB

s)nNsay

document

Exastro

Explanation

Parameters created in
the parameter design
will be registered to the
CMDB. This will
formalize parameters
and help eliminate
ambiguity, improving Q.

Additionally, the
operation procedures,
such as the order of
application of
parameters, will be
replaced by the job flow
created in the early
preparation stage. As a
result , creating
operation procedures
will be deleted. This will
improve both C and D

Op.Design

] Changes in QCD per phase tegend:Q", ...

Defining

 Design |
a[c[plalc]p]alc b a]c D
Before |© © ©|lO © 0|0 © OO © OO ©O|o ©©|o ©©

Det.Design = Op. Design

Production

@ Better Might have

additional work

Test

Release

(o[c|ofiof e [pfolc o]

ater |0 FSlooole@e|looolee®|loooleo®e®
I Product and Process changes |¢gend: \° With Add (Work) D& | work
* changes changes lete
=
o
A reate monitorin Create Operation
(;IDJ g NC fdesign documentﬂ —»> [procedures]_>
A7)}
2 ___
(] ?5’ - Monitoring - Operation
g desigh document Procedures
@
A <No changes> <No changes>
o . .
o reate monitorin Create Operation
> @ > fdesign documena > [procedures]_>
=
£
- o - Monitoring - Operation
c design document Procedures
(g
(/]

Exastro

Explanation

Since this section
focuses on
automating
construction,
automating the
operations is not
taken into
consideration.

When operational
automation is
implemented, the
process and QCD will
most likely change.

1 . 0 Might have
I Changes In QCD per phase Legend' cNhanges @ Better ad%itional work Explanation

| Defining | Design Production _ Test The configuration file
Qjc|pjojc|p|ejc|p]ofc|D|Q IR EIEIE] s created based on
Before |[© © 0|0 © 0|0 © ©|l0 0|0 ©O|O ©©|© © © the Detailed design.

After |@ @%@'@@@'@@@l@@@ © Qe @@@l@ ® @ ltis automatically

generated from IaC
| Product and Process changes cgenq: l:r?anges With Add (Work) D& work and CMDB, so the

Det.Design

changes let .
s i S tasks of creating
3 config files is deleted.
A > Create >
o @ Config file
S e T
(] ?5’ - Config File
£
7]
A <Delete>
a
® >
2 &
= USSR
1

s)nNsay

Exastro

I Changes in QCD per phase Legend:@,)No @ Better Might have

changes

Defining

Det.Design

olcipjojciplojciplolcip]olciDlQ]C|D
Before |©O © OO © OO © ©lo ©©|© ©O|© © ©JO © ©

Production Test

additional work

Release

(@€]ip

ater |lo GGloooleee|looo|leeelooole ®@
. No With De-
| Product and Process changes | gena: changes (o) then (Work) add (Wer) DS wori
L")
o
A Create Test
@ 2 N [design documents]_> [Run tests]_>
Q ®»
2 ___
(] ?5’ - Test design - Test results
g document
o
A <No changes> <No changes>
o]
o Create Test
> & > [design documents]'> [Run tests]_>
=L
e PSS ettt ettt
I - Test design - Test results
E document
7]

Exastro

Explanation

Again, this time,
we're focusing on
automating the
construction of a
system. Therefore,
the test itself is not
getting automated.

Similar to the
production phase, the
QCD/process will
change if the test
phase is automated.

Release

Might have
additional work

| Changes in QCD per phase Legend:©

After

Defining

No

Det.Design | Op. Design

changes

Production

@ Better

Test

Release

olciplojciplojciplelcip]olciD]Q/C|D Q]CID
Before |©O © OO © OO © ©|lo©O|O ©O|O ©O|O © ©

lo FHoooleee|lovol|le®e|o oole ©@®

| Product and Process changes | cgend: ’:r?anges ‘C’Yj;';ges Add (Werk] ° work

U

o

A Create Start .
w Q2 > [Time chart]_> [Operation]_> [Check Ewdence] >
e o
2 ___
(] ?5’ - Time chart - Updated system - Evidence confirmation

g - Evidence results

7]

9 <Delete> <With Changes> <Delete> <Add>

g > Run Jobflow > Check Jobflow >
> 8 confirmation results
=
=
s

s)nNsay

- Updated system
- Evidence
- Evidence confirmation results

- Confirmation
results

Exastro

Explanation

The main task is to run
the job flow created in
the Detailed Design
phase.

Since the time chart is
replaced by the
Jobflow, it will be
deleted.

Since the evidence is
checked in the Jobflow,
the evidence check
task will also be
deleted.

Therefore, execution of
the job

Summary

Ay Exastro

By following step 1-3, we can automate system operation/construction.
Additionally, by changing the process, we can improve the efficiency of the
automation.

TO-BE

Automated system
construction/operation

A Preparing for Automation (Step 1. Step 2. Step 3)

e

Implementing Automated SI(Changes to the
AS-IS process and results)

Manual system
construction/operation

Ay EXastro

